3,249 research outputs found

    BOD:COD Ratio as an Indicator for Pollutants Leaching from Landfill

    Get PDF
    The relationship of BOD to COD of leachate from a mature landfill site are investigated over a period of six years to determine the indicator to be used for prediction of leachate characteristic generating from landfill site. Results of the investigation reveal that BOD:COD ratio is a good indicator of degradation of organic matter in landfill. It can be used as an indicator for degradation of organic matter that differentiate the acetogenic phase from methanogenic phase in this landfill

    Two-Dimensional Vortex Lattice Melting

    Full text link
    We report on a Monte-Carlo study of two-dimensional Ginzburg-Landau superconductors in a magnetic field which finds clear evidence for a first-order phase transition characterized by broken translational symmetry of the superfluid density. A key aspect of our study is the introduction of a quantity proportional to the Fourier transform of the superfluid density which can be sampled efficiently in Landau gauge Monte-Carlo simulations and which satisfies a useful sum rule. We estimate the latent heat per vortex of the melting transition to be ∼0.38kBTM\sim 0.38 k_B T_M where TMT_M is the melting temperature.Comment: 10 pages (4 figures available on request), RevTex 3.0, IUCM93-00

    P197 THE EFFECTS OF SYNTHETIC TRITERPENOIDS ON SZP SYNTHESIS IN ARTICULAR CHONDROCYTES

    Get PDF

    Tunneling gap of laterally separated quantum Hall states

    Full text link
    We use a method of matched asymptotics to determine the energy gap of two counter-propagating, strongly interacting, quantum Hall edge states. The microscopic edge state dispersion and Coulomb interactions are used to precisely constrain the short-distance behavior of an integrable field theory, which then determines the low energy spectrum. We discuss the relationship of our results to the tunneling measurements of Kang et al., Nature 403, 59 (2000).Comment: 4 pages, 1 figur

    Heavy quark mass determination from the quarkonium ground state energy: a pole mass approach

    Full text link
    The heavy quark pole mass in perturbation theory suffers from a renormalon caused, inherent uncertainty of O(ΛQCD)O(\Lambda_{\rm QCD}). This fundamental difficulty of determining the pole mass to an accuracy better than the inherent uncertainty can be overcome by direct resummation of the first infrared renormalon. We show how a properly defined pole mass as well as the MSˉ\bar {\rm MS} mass for the top and bottom quarks can be determined accurately from the O(mαs5)O(m\alpha_s^5) quarkonium ground state energy.Comment: 16 pages; published versio

    Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part I : theoretical formulation and model validation

    Get PDF
    This paper is first of the two papers dealingwith analytical investigation of resonant multimodal dynamics due to 2:1 internal resonances in the finite-amplitude free vibrations of horizontal/inclined cables. Part I deals with theoretical formulation and validation of the general cable model. Approximate nonlinear partial differential equations of 3-D coupled motion of small sagged cables - which account for both spatio-temporal variation of nonlinear dynamic tension and system asymmetry due to inclined sagged configurations - are presented. A multidimensional Galerkin expansion of the solution ofnonplanar/planar motion is performed, yielding a complete set of system quadratic/cubic coefficients. With the aim of parametrically studying the behavior of horizontal/inclined cables in Part II [25], a second-order asymptotic analysis under planar 2:1 resonance is accomplished by the method of multiple scales. On accounting for higher-order effectsof quadratic/cubic nonlinearities, approximate closed form solutions of nonlinear amplitudes, frequencies and dynamic configurations of resonant nonlinear normal modes reveal the dependence of cable response on resonant/nonresonant modal contributions. Depending on simplifying kinematic modeling and assigned system parameters, approximate horizontal/inclined cable models are thoroughly validated by numerically evaluating statics and non-planar/planar linear/non-linear dynamics against those of the exact model. Moreover, the modal coupling role and contribution of system longitudinal dynamics are discussed for horizontal cables, showing some meaningful effects due to kinematic condensation

    Edge and Bulk of the Fractional Quantum Hall Liquids

    Full text link
    An effective Chern-Simons theory for the Abelian quantum Hall states with edges is proposed to study the edge and bulk properties in a unified fashion. We impose a condition that the currents do not flow outside the sample. With this boundary condition, the action remains gauge invariant and the edge modes are naturally derived. We find that the integer coupling matrix KK should satisfy the condition ∑I(K−1)IJ=ν/m\sum_I(K^{-1})_{IJ} = \nu/m (ν\nu: filling of Landau levels, mm: the number of gauge fields ) for the quantum Hall liquids. Then the Hall conductance is always quantized irrespective of the detailed dynamics or the randomness at the edge.Comment: 13 pages, REVTEX, one figure appended as a postscript fil

    Strongly correlated fermions with nonlinear energy dispersion and spontaneous generation of anisotropic phases

    Full text link
    Using the bosonization approach we study fermionic systems with a nonlinear dispersion relation in dimension d>2. We explicitly show how the band curvature gives rise to interaction terms in the bosonic version of the model. Although these terms are perturbatively irrelevant in relation to the Landau Fermi liquid fixed point, they become relevant perturbations when instabilities take place. Using a coherent state path integral technique we built up the effective action that governs the dynamics of the Fermi surface fluctuations. We consider the combined effect of fermionic interactions and band curvature on possible anisotropic phases triggered by negative Landau parameters. In particular we study in some detail the phase diagram for the isotropic/nematic/hexatic quantum phase transition.Comment: RevTeX4, 9 pages, 2 eps figures, Final version as appeared in Phys.Rev.
    • …
    corecore